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STABILIZATION OF A DIGITALLY CONTROLLED
ACTIVE-ISOLATION SYSTEM

S. E. Forsythe,' M. D. McCollum,' A. D. McCleary'

ABSTRACT

Digital control techniques have proved beneficial in many control appli-
cations because they are flexible and they lend themselves to adaptive
implementations. However, in control systems that require feedback, rather
than feedforward, as the control mechanism the advantages of digital control
are offset by the difficulty of designing stable controllers. The time lag
introduced by the sampling process itself is compounded by the time lag
introduced by anti-aliasing filters. These lags, in conjunction with low
sampling rates, make an otherwise stable system subject to instability if
high open-loop gains are required. This pappr will focus on a technique for
adding an empirical model of the system under control to the control loop as
a means of stabilizing the system.

INTRODUCTION

The objective of this effort is to create an active planar element that has
one face held to zero motion in the presence of vibration at the other face.
The active elcment consists of two flat piezoelectric elements bonded
together: an actuator which is placed next to the vi rating face and a
sensor which is used to measure motion of the other face. The actuator is
used to counter motion of the vibrating surface and the sensor is used to
measure residual motion of the controlled surface. The planar element has
resonances but below the first resonance it can be assumed that the transfer
of electrical and mechanical energy is primarily through thickness modes so
that voltages applied and read are truly representative of the normal motion
of the surface. An independent accelerometer is used to verify the
performance of the surface element.

The strong coupling from the actuator to the sensor makes control of the
system different from many active noise cancellation applications where the
two are physically separated and there is little or no feedback from the
compensator to the sensor.

This paper is confined to the control theory aspects of the system outlined
above. The mechanical aspects of the problem are discussed in a companion
paper [1].

This paper is organized into four sections: description of the control
problem to be solved and a derivation of the control equation; details of
the derivation of the model and control transfer functions; a presentation

'Nava H earnlh Laxooaorv Underwater Sound Relerence )eiachrilenrt PO Hov 568337 (Oriir o. FL 32856 8337.
US A
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Figure 1 - overview of controller and controlled system

of experimental setup and actual real-time cancellation results; and a
discussion of future work on this technique.

DESCRIPTION OF THE PROBLEM ANID DERIVATION OF THE CONTROL EQUATION

Figure I is an illustration of the system we wish to control and the
attached controller. At this point, the controller is specified as a black
box so that we can focus on the mechanical/electrical system under control.
A disturbance d is presented to the system. Without loss of generality, it
can be assumed that a copy of d is available to the sensor input s of the
control system (any system transfer function from d to s can be lumped with
the source). Further, the control system can influence the behavior of the
system at the summing point by applying an actuator control signal a to the
system. The actuator's effect is felt at the summing point after passing
through a loop transfer function, H. In our apparatus, the summing point
represents the motion of the top surface. It is this motion and the
corresponding signal s that we wish to drive to zero by application of the
appropriate control signal a.

In terms of classical control theory, the controller in the loop can be
represented by the transfer function G (which is to be determined) that
converts the sensor's reading into a control output to the actuator. The
equation relating s to d is then

s-1 - GH" 1

Note the sign. Both signals add at the junction. Classical control theory
says that s can be driven toward zero over some frequency range by choosing
G to make the product GH large over that range. However, this leads to the
potential instability problems mentioned above.

Fig. 2 shows the "interior" of the controller: a model M of H is introduced
in a parallel negative feedback loop implemented within the control system
itself. This model M is designed to reproduce as closely as possible the
response of H. Note that M can be implemented in any fashion (analog,
digital, etc.).
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The response of the compensated system at sl (the input to the control box,
G) is

sl= d (2)
1 (M-

Note the sign of V in the denominator; the output of M is subtracted at the
summing point. When in the loop, the model reduces the effect of the
actuator a on the input to G. In fact, if the model is perfect (M=H) then
sl = d and the input to C is only a replica of the original disturbance
signal, uncontaminated by the effects of the actuator. This effectively
opens the loop. Further, with the model in the loop, the new expression for
S is

S= d(1 + CM) (3)
1 + G(M - H)"

In the best possible case, if M = H and CK S -1 (G R -1/), by construction,
then s is identically zero independent of d, Lhe disturbance. This is
equivalent to perfect broadband cancellation of the disturbance at s.

In practice M cannot be set exactly equal to H, but it can be made
arbitrarily close (see below for implementation). Making M close to H has
the effect of increasing stability in the system by making the magnitude of
the term G(M-H) in the denominator less than 1. This guarantees that the
Nyquist criterion for stability will be satisfied.

Also, in practice, G cannot always be chosen to be exactly equal to -I/M.
In some cases V may not be minimum phase, which would require that C be
acausal. However, by constructing G to equal -1/U over a small range of
frequencies it is possible to achieve very good cancellation over a small
band of frequencies of interest at the expense of poor cancellation at all
other frequencies.

The control system described so far is very general. Before proceeding to
the implementation for digital control systems, it is worth reviewing
exactly what has and has not been accomplished. The decomposition of the
controller into G and M cannot improve the overall performance of the
control system.

S1 + __ _ + -d

G M H

System under control

Figure 2 - control system decomposition

L
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- d(l+z-'GM)

z ' HL

Figure 3 - digital control system with delays

That is, for a given H, noise level, signal ensemble, etc., the theoretical
'best" controller performance remains the same when stated in terms of
'greater than X dB cancellation of signals over a specified frequency
range'. What can be achieved, given the decomposition into G and M, is to
determine M (the "modelling" aspect of the problem, which is easier than the
ncontrol" aspect) and, using M, then determine G using open-loop feedforward
techniques. Futur. directions for adaptive implementation of the M and G
functions will be discussed at the end of the paper.

DERIVATION OF THE MODEL AND CONTROL TRANSFER FUNCTIONS

We now proceed to show how the transfer functions M and G are derived for a
digital control system. Figrire 3 shows the system of Fig. 2 transformed
into a more conventional closed-loop form. In addition, the H and M blocks
of Fig. 2 have been decomposed further into new blocks concatenated with
explicit sampling delays. The boundary of the control system is shown by a
dotted line. For this discussion, the signal s is the digitized output of
the control system's A/D converter (ADC) and signal a is the digital value
to be sent to the system's D/A converter (DAC).

The program implemented in the control system is

1. Wait on clock for the next sample.
2. Read ADC and subtract the last model (M) output giving sl.
3. Apply G to sl giving a and send to DAC.
4. Apply M to a giving the next model output.

DERIVATION OF THE M TRANSFER FUNCTION

Because the digital controller in the loop is 'smart' it is possible to
inject a test signal into the system under control at the controller's
output a and record the effect of the signal at the controller's input s.
The set of pairs (x.,yi), where i = O..N and the x's and y's are outputs to
the actuator and inputs to the sensor respectively, then forms the basis for
estimating H. Note that if a given a and s are paired during the same
sample interval, then the resulting transfer function will include any
5ampling delays around the loop in addition to the external transfer
function of the system under control.

I
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The M transfer function is best realized in terms of an IIR (infinite
impulse response) filter of the form

m n
yr= Z_ bkxrk + 2= akYr-k. (4)

This filter form includes both poles that will accurately model the
mechanical or electrical response of H as well as zeroes that will model
delays in H. Many techniques are available for estimating H based on input
and output data (2].

We chose to drive the actuator with a succession of sinusoids and analyze
the response at the sensor using the single-line DFT

N-1
H(z) = Z hk z-k where z =e jwT (5)

k=-O

to determine the complex amplitude response at equally spaced frequencies
below the Nyquist limit. Using this method it is possible to achieve a high
signal-to-noise ratio in the estimates of H as a function of frequency. The
actual system transfer function obtained this way is multiplied by x to
remove a one sample delay; the resulting transfer function corresponds to H
in Fig. 3 above. The estimate of M is then computed by using the least-
squares fit of H(zi) to an equation of the form

m -kZ bkZkBz

M(z) k--O or M(z) = -B(z)

M = n -k 1 - A(z)

k=1

As a first approximation, the linear form of the equations

[ 1 - A(zi)].M(zi) = B(zi) (7)

are fit setting M(zi) equal to the measured H(zi). The solution to this
problem can then be used as a starting approximation for an iterative
solution of Eq. (6) using the Levenburg-Marquadt or a similar technique.

Since Eq. (6) for M(z) (with the ak and bk coefficients determine above) is
analytic and assumed stable, it can be evaluated at any value of z on the
unit circle.

In practice, the least-squares solution to Eq. (7) was an adequate
approximation of H.1 Recalling Eq. (3), it is only necessary that IM-HI be
small for stability to be acceptable. For highly resonant systems, it may
be necessary to fit Eq. (6) if noise in the system renders the first
approximation unstable when implemented as an IIR filter.

DERIVATION OF THE G TRANSFER FUNCTION

Once M has been estimated, the construction of G such that MG = - over the
frequency range of cancellation is theoretically straightforward.
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First, it is necessary to choose a filter model for G. We chose the FIR
(finite impulse response) filter model

G(z) = m -k (8)
k=O

because of its inherent stability. The construction of G then becomes a
linear least-squares fit in the z domain using as "actual" values of G(zi)

1
G~zi) = (zi 1O

Gz) -M(z.) (9)

at the appropriate z. on the unit circle corresponding to the frequency
range of interest. 1

It is important to use enough values zi to overdetermine the problem. If,

for example, the number of sample points on the unit circle is equal to the
order of the FIR model, the solution will be exact for the frequencies
specified, but may be poorly behaved even in the neighborhood of those
frequencies. In practice, using roughly twice as many sample points as
coefficients made the resulting FIR filters uniform in the region of
interest.

EXPERDM AL INVESTIGATION

To investigate the above controller design, we first used a purely
electrical system with no mechanical elements. Investigation of the design
methodology on the mechanical system is still in progress. The electrical
system consisted of

1. A summing op amp to implement the summing junction in Fig. 1.

2. An HP 35660A spectrum analyzer to generate the swept sinusoid
disturbance d and to measure the signal s (the op amp's output) to
verify the cancellation ability of the system.

3. A digital signal processor (ASPI's TMS32030-based product) and a 16
bit ADC and DAC module used to implement the digital control system.
The sample rate of the control system was chosen as 125 kHz.

4. Software written by us to implement the M and G filters and to drive
the output a during the determination of transfer function.

5. A cascaded low- and highpass filter pair (48 dB/octave) used to
provide a realistic system transfer function H.

Consistent with the discussion above, the H of Fig. 2 consists of both the
analog filters in the feedback loop and the digital delays in the ADC/DAC
module. In fact, the time lag due to the I/0 module alone is two sample
times, arising from the buffered implementation of the ADC and DAC.

Figure 4 shows the amplitude response and group delay of the transfer
function H from a to s.
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Figure 5 - actual vs. calculated response

DETERMINATION OF THE K TRANSFER FUNCTION

A filter order for M was chosen using m=9 and n=8 in Eq. (5) above. The
comparison of M to the measured R is shown in Fig. 5. Note that the
agreement of M and H is good except where BlI is small. The fit could be
improved in this region by weighting the least-square design equations more
heavily in the region below 10 kHz.

DETERMINATION OF THE G TRANSFER FUNCTION

A filter order of m=20 was chosen for the realization of G using Eq. (8).
Forty equally spaced sample points, Zk, were chosen over each of the 4 kHz

frequency ranges. A desired G(zk) was then calculated for each point using
Eq. (9). These values were then fit to the FIR filter model in Eq. (8).

As a check on stability, the term G(M-H) was plotted in the complex plane
for all frequencies where H was measured. In all cases, the resulting path
was entirely inside the unit circle with a maximum magnitude of IG(M-R)l
equal to -6.8, -15, -18.5, and -20.3 dB (re unity) for the 10, 20, 30, and
40 kHz bands respectively. If the path had violated the Nyquist design
criterion, it would have been necessary to either:

improve the fit of V to H at the problem frequencies to reduce the
difference r-HI ;

or
place additional constraints on C in the least-squares fit by
requiring that it be small at critical frequencies.



886 ACTIVE ISOLATION

10
0

-, -10-
M -20
.- 30

-40
-50 control loop response
-60
-70

o -80
-90

0 10 20 30 40 50 60 70
frequency (kHz)

40

"30_
group delay (1 25 kHz sampling rote)

E
0 20

o 10 6 sample delay

0
0 10 20 30 40 50 60 70

frequency (kHz)

Figure 4 - measured control loop response

Note the large group delay of six samples or more in the system at virtually
all frequencies. It is these large delays that make digital control
difficult, since a delay of six samples produces a 180-degree phase shift
every 10 kHz.

The design problem posed for this experiment was to construct four pairs of
control functions 0 and M that would null the input s within a band 4 kHz
wide starting at any one of four frequencies: 10, 20, 30, or 40 kHz.

Figure 6 shows the performance (20 log s/d) of the control systems designed
for the specified frequencies. In all cases, the uncontrolled system has a
flat magnitude response of unity (0 dB).



30

~n 10-
C

0

nul 

0o 

-
"

- 10-

N -20- 
___

0 3
a 40 _________________________________

0 1 0 20 30 40 50

frequency (kHz)

10-

0

303

actual null bond 20-24 k
E -40 * calculated
o
0 5

0 10 20 30 40 50

frequency (kHz)

-o-

,n
C
0

null bond 30-34 kHz

E -40 * calculated4
0

0 020 30 40 50
frequency (kHz)

10-

03
C
0

E. -410 nl ad 04
0

- 0-1 03 05

f requency (kHz)

Figure 6 - performance of 10, 20, 30, and 40 k~lz controllers



888 ACTIVE ISOLATION

Four important qualitative results are evident from these plots:

1. Actual cancellation (roughly 30 dB in the center of the band) is
uniform for the same filter design parameters, independent of which
frequency range is chosen for cancellation. This is a good
indication of the robustness of the design technique.

2. The agreement between the calculated controller performance and
actual performance was excellent in all cases. This allows the
designer to use simulation results with confidence.

3. Given the same design parameters, the cancellation achieved was
poorest in the 10-14 kHz band. Of the four regions chosen, this is
the region where the delays in H (Fig. 4) are largest, making the
compensation problem more difficult.

4. In all cases, the cancellation in the band of interest was achieved
at the expense of some enhancement in other parts of the spectrum.
This unwanted enhancement can be controlled to some extent by
varying the design parameters of the G filter, but the most serious
limitation on performance is the cancellation bandwidth desired
relative to delays in H.

FUTURE DIRECTIONS

Future work on this technique will lie in the area of determining M and G
adaptively. The problem with adaptive implementation of feedback systems
arises from the possibility that the adaptive filter may become unstable due
to "noisy' nature of the adaptive path in coefficient space [3]. It is
hoped that a good initial determination of M will provide increased
stability to allow the adaptive implementation of G.

Future directions:

1. Currently, the estimate of H is made by driving a in absence of d,
the external disturbance. For adaptive implementation of M, an
algorithm must be specified that can estimate H even in the presence
of d. Any desirable algorithm would bound the maximum allowable
power that driving a would contribute at the summing point: test
signals injected by the control system must be much "quieter' than
the disturbance we are trying to control.

2. Can M and G be adapted simultaneously or should they be adapted
alternately to help stability?

3. What is the best mix of computing time applied to adapting M and G?

CONCLUSIONS

Decomposing a feedback-based cancellation system into a model section M and
a control section C offers a conceptual advantage when the control system to
be designed has delays in the control loop. This conceptual advantage may
result in real design advantages when the control system is to be
implemented adaptively because of the increased decoupling of output to
input offered by a good match of M to the actual control loop transfer
function H.
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Footnotes

In solving all of the linear least-square systems described above, the

Singular Value Decomposition (SVD) was used to overcome any near rank

deficiencies in the L.S. design matrices [4]. In the least-squares
formulation

AtAx = A tb,

the matrix AtA was decomposed into UEV and the inverse formed as

Vt E-1U t

with the elements of E-1 corresponding to ai O.OOOOlamax in E set to 0.


